都来读书

字:
关灯 护眼
都来读书 > 大国院士 > 第二百七十四章:从数学界刮到物理界的风

第二百七十四章:从数学界刮到物理界的风

  第二百七十四章:从数学界刮到物理界的风 (第1/2页)
  
  书房中,徐川仔细的检查着证明过程。
  
  在将NS方程的阶段性成果仔细的滤了一遍后,时间就差不多来到了中午。
  
  本来想着自己动手将这些稿件输入电脑中,但看到堆的厚厚一叠的稿件,他就怂了。
  
  转念一想,他不是还有学生么,这种小事交给带的学生就好了。
  
  而且,整理文稿将其输入电脑,也能让他们深入了解这篇论文的核心,学习到更多的知识点。
  
  这是对他们的帮助!
  
  想到这,徐川脸上露出了笑容,掏出了手机就给两个学生打了过去。
  
  “喂,谷炳,喊上阿米莉亚来我的别墅一趟,这里有篇论文需要你们帮忙输入电脑中。”
  
  “对了,记得带上你们的电脑。”
  
  挂断电话,徐川重新思索了起来。
  
  NS方程推进到这一步,可以说距离克雷数学研究所提出的猜想只剩最后一步了,他也在思索着这一步该怎么走。
  
  但对于NS方程,如今的数学物理界并没有统一完整的证明思路。
  
  并不是说所有人都期待‘纳维叶-斯托克斯方程存在性与光滑性’,也有很大一批的数学家或物理学家们在证伪。
  
  即他们认为NS方程不存在光滑且连续的解。
  
  这来源于流体的特性。
  
  在转捩流动和湍流流动中,给定的光滑的初值条件和边界条件,在足够高的Re,在流动演化过程中,速度剖面会发生变化和畸变。
  
  经过NS方程的严格推导,流体的速度在畸变的剖面上发生了间断,即出现了奇点(这就是转捩的开始)。
  
  而因为流动变量在奇点处是不可微分的,所以NS方程在奇点处没有解,因此NS方程在全局域上的光滑解不存在。
  
  认为NS方程不存在光滑连续的解的一派学者,基本上大部分都赞同这个理念。
  
  奇点不可解,不可微风,这在数学上是共识。
  
  不过证实派的学者则不同。
  
  他们始终都认为NS方程的解存在,且连续光滑。
  
  而在这一排中,就不得不提到一个最著名的数学家了。
  
  那就是前红苏的柯尔莫果洛夫,数学界人称的‘柯老邪’,是上个世纪九十年代数学界的全才。
  
  如果有学过现代概率论,那么对这个名字肯定不会陌生。
  
  如果说格罗滕迪克奠定了代数几何,那么柯尔莫果洛夫则奠定了现代概率论。
  
  但他一开始并不是数学系的,据说他17岁左右的时候写了一篇和牛顿力学有关的文章,于是到了科斯莫去读书。
  
  入学的时候,柯老邪和爱德华·威腾一样,一开始对历史颇为倾心。
  
  一次,他写了一篇很出色的历史学的文章,他的老师看罢,告诉他说在历史学里,要想证实自己的观点需要几个甚至几十个正确证明才行。
  
  而柯老邪就问什么地方需要一个证明就行了,他的老师说是数学,于是他就开始了他数学的一生。
  
  而除了奠定现代概率论外,要论柯尔莫果洛夫一生无数中最耀眼的,莫过于湍流三分之律和scaling思想了。
  
  这个成果引领了流体力学近百年来的发展,在流体力学发展的长河中,他以神来之笔在现代湍流发展史上写下了浓墨重彩的一章。
  
  这就是大名鼎鼎的K41理论。
  
  K41理论认为,无论一个湍流系统如何复杂,其涡旋结构都有着相似性,即涡的动能总是由外力作用施加给流场,并注入最大尺度(假设为L)的涡结构。
  
  然后,大尺度涡结构逐次瓦解并产生小型涡旋,同时也将动能由大尺度逐级传向小尺度结构,并依此类推。
  
  但此过程并不会无限进行下去,当涡结构尺度足够小(假设为η)时,流体粘性将占据主导地位,动能转化为内能在该尺度上耗散掉,继而不会继续传向更小尺度的涡结构。
  
  这个过程,被称为能级串过程。
  
  这是当代流体力学最重要也是最基础的知识点。
  
  其他学校徐川不知道,但当初在南大的时候,这一知识点在考试中占据了整整十分的篇幅。
  
  可谓重中之重。
  
  而NS方程的解存在且连续光滑,就有一部分理论建立在K41理论上。
  
  这一次徐川将NS方程推进到一个前所未有的高度,同样利用了这一套理论。
  
  目前来看,K41理论同样适应于湍流,只是不知道,在未来面对最终的NS方程求解时,它是否还能如现在一般大杀四方。
  
  收到电话后,谷炳和阿米莉亚风风火火的迅速赶了过来。
  
  “教授,我们到了,麻烦你开下门。”
  
  书房中,徐川接到了谷炳打来的电话,起身出去将两位学生带了进来。
  
  “辛苦你们跑一趟了,这个就是要整理输入电脑中的论文。”
  
  闻言,谷炳朝着书桌上的论文看去,阿米莉亚则是没有动弹,她带着兴奋的看向徐川,好奇的问道:
  
  “教授,您已经证明了NS方程?”
  
  众所周知,他们的导师有个怪癖,那就是在面对一个问题时,如果不解决他,几乎就不会出门。
  
  而现在,很显然是有了结果的。
  
  徐川摇了摇头,道:“并没有。NS方程现阶段要证实太难了,基本不可能。”
  
  话音刚落,一旁就传来了谷炳的惊呼声:“教授,您证明了NS方程?”
  
  闻言,阿米莉亚顿时就朝徐川投去了疑惑的目光。
  
  徐川说自己没有证明NS方程,那谷炳手中的稿纸是什么?
  
  注意到自己学生疑惑的目光,徐川耸了耸肩,道:“只不过是NS方程的一个阶段性成果而已。”
  
  带着疑惑,阿米莉亚疑惑的从谷炳手中抢稿纸,目光落在了标题上。
  
  
  
  (本章未完,请点击下一页继续阅读)
『加入书签,方便阅读』
热门推荐
御鬼者传奇 逆剑狂神 万道剑尊 美女总裁的最强高手 医妃惊世 文明之万界领主 不灭武尊 网游之剑刃舞者 生生不灭 重生南非当警察